Locally one-dimensional finite-difference time-domain scheme for the full-wave semiconductor device analysis

نویسندگان

  • R. Mirzavand
  • A. Abdipour
  • G. Moradi
  • M. Movahhedi
چکیده

The application of an unconditionally stable locally one-dimensional finite-difference time-domain (LOD-FDTD) method for the full-wave simulation of semiconductor devices is described. The model consists of the electron equations for semiconductor devices in conjunction with Maxwell’s equations for electromagnetic effects. Therefore the behaviour of an active device at high frequencies is described by considering the distributed effects, propagation delays, electron transmit time, parasitic elements and discontinuity effects. The LOD-FDTD method allows a larger Courant–Friedrich– Lewy number (CFLN) as long as the dispersion error remains in the acceptable range. Hence, it can lead to a significant time reduction in the very time consuming full-wave simulation. Numerical results show the efficiency of the presented approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

Global modeling of nonlinear circuits using the finite-difference Laguerre time-domain/alternative direction implicit finite-difference time-domain method with stability investigation

This paper describes a new unconditionally stable numerical method for the full-wave physical modeling of semiconductor devices by a combination of the finite-difference Laguerre time-domain (FDLTD) and alternative direction implicit finite-difference time-domain (ADI-FDTD) approaches. The unconditionally stable method by using FDLTD scheme for the electromagnetic model and semi-implicit ADI-FD...

متن کامل

A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows

Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

Application of a One-Dimensional Computer Model to Flood Routing in Narrow Rivers

This paper deals with the development of a computer model for flood routing in narrow rivers. Equations describing the propagation of a flood wave in a channel-flood plain system are presented and solved using an implicit finite difference scheme. Particular emphasis has been given to the treatment of the friction term in the governing equation of motion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010